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NOMENCLATURE

total aircraft drag, side force, lift along wind axes
gravitational acceleration

rate of climb

moment of inertia about x—body axis

moment of inertia about y-body axis

moment of inertia about z-body axis

product of inertias in body axes

total aerodynamic and propulsive moment about x-body axis
total aerodynamic and propulsive moment about y-body axis
aircraft mass

z-body axis

total aerodynamic and propulsive moment about

ratio of the total aerodynamic and propulsive force acting on the

aircraft to the weight of the aircraft
ratio of the total aerodynamic and propulsive force acting on the
aircraft perpendicular to the flightpath to the weight of the

ajircraft

ratio of the total aerodynamic and propulsive force acting on the
aircraft along the flightpath to the weight of the aircraft

accelerometer reading along the body axes (also referred to as
n-parameters along the body axes)

n-parameters along the wind axes

angular rates of the aircraft about body axes

radius of turn

airspeed components in the aircraft body axes system
components of flight velocity (%i) in the body axes system

+
components of wind velocity (VW) in the Earth reference axes
system

iii



A airspeed (i.e., speed of flight with respect to air mass)

VI speed of flight with respect to earth

Vw speed of the wind with respect to the Earth

W weight of the aircraft

X total aerodynamic and propulsive force acting on the aircraft

along x-body axis

X,¥»2 body axes system
XpsYps2g earth reference axes (regarded as an inertia axes in this report)
X oY 02 wind axes system aligned with D, Yw’ and L
Y total aerodynamic and propulsive force acting on the aircraft
along y-body axis
Z total aerodynamic and propulsive force acting on the aircraft
along z-body axis
o angle of attack with respect to air mass, o é tan—l(g)
Y1
o "angle of attack" with respect to Earth, a, = tan—1<a—>
I
B angle of sideslip with respect to air mass, B é sin—l(%)
B#* alternate definition of angle of sideslip, B* 4 tan” ! E)
A v
BI "angle of sideslip" with respect to Earth, BI = sin_l(v—>
I
r aerodynamic flightpath angle with respect to air mass,
h - v
= ain~ i —Y
T sin 7
Y aircraft flightpath angle (with respect to Earth), vy = sin"l(%L>
I
Au,Av  Aw components of wind velocity (%W) in the body axes system

§ ,§ ,8 ,8 longitudinal, collective, lateral, and directional control
displacements

®,0,¥ aircraft Euler angles with respect to Xps Yy 2p
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tilt angle of the o, from the vertical plane containing the
. T
flightpath

rate of turn of the aircraft about Earth-referenced vertical axis



KINEMATIC PROPERTIES OF THE HELICOPTER IN COORDINATED TURNS
Robert T. N. Chen and James A. Jeske

Ames Research Center

SUMMARY

This paper describes the results of a study on the kinematic relationship
of the variables of helicopter motion in steady, coordinated turns involving
inherent sideslip. A set of exact kinematic equations which govern a steady
coordinated helical turn about an earth-referenced vertical axis is first
developed. A precise and rational definition for the load factor parameter
that best characterizes a coordinated turn is proposed. Formulas are then
developed which relate the aircraft angular rates and pitch and roll attitudes
to the turn parameters, angle of attack, and inherent sideslip. These new
closed-form formulas are then used for a detailed evaluation of the effects of
sideslip on the kinematic relationship of the helicopter in coordinated turns.
Important symmetrical properties that exist in these kinematic relationships
are also discussed.

A steep, coordinated helical turn at extreme angles of attack with inher-
ent sideslip is of primary interest in this study. The results show that the
bank angle of the aircraft can differ markedly from the tilt angle of the
normal load factor and that the normal load factor can also differ substan-
tially from the accelerometer reading along the vertical body axis of the
aircraft. Generally, sideslip has a strong influence on the pitch attitude and
roll rate of the helicopter. The latter could have a significant impact on
handling qualities because of the direct coupling of roll rate to the thrust
of the main rotor.

The results of the analysis also indicate that pitch rate is independent
of angle of attack in a coordinated turn and that in the absence of sideslip,
angular rates about the stability axes are independent of the aerodynamic
characteristics of the aircraft.

INTRODUCTION

With the development of armed helicopters for their expanded roles in
missions such as ground attack and air to air combat, the question of helicop-
ter maneuverability is receiving increased attention. Better analytical
methods are needed to achieve a reliable prediction of the rotor thrust limits
and aircraft performance, thereby permitting an accurate simulation of the
trajectory and the orientation of the aircraft in maneuvering flight, espe-
cially those flights involving extreme conditions. Efforts have been and are
still being made (refs. 1-4) to meet this need. Improved flight test tech-
niques are also needed to evaluate and substantiate the actual maneuvering
limitations of the helicopter.



Basic to the flight evaluation of helicopter maneuvering capability is
steady and coordinated turning flight (refs. 5-6). These maneuvers are often
conducted along steep, helical descending paths to achieve a higher load factor
(at a given airspeed) by taking advantage of energy maneuverability (ref. 2).
Although the establishment of kinematic relationships in this and other
maneuvering flight regimes is normally a major objective of the flight investi-~
gation for a specific helicopter (e.g., ref. 5), experience has indicated that
test data do not correlate well with predictions from simplified theory. An
example showing lack of correlation with regard to the kinematic relationship
between the bank angle and the normal load factor is depicted in figure 1,

Efforts have been made (refs. 2 and 6) to improve the theory by properly
accounting for the inherent sideslip that normally exists in a coordinated
turn for single main rotor helicopters. Unfortunately, in the development of
the modified theory two important factors have heretofore been ignored:

1. In a steady coordinated turn about an earth-referenced vertical axis,
the tilt of the thrust vector (or more accurately the total aerodynamic and
propulsive force) of the helicopter from the vertical plane containing the
flight velocity can differ appreciably from the aircraft bank angle, especially
in a steep and tight turn with substantial inherent sideslip.

2. The difference between the normal load factor and the accelerometer
signal along a vertical body axis having its origin at the center of gravity
of the aircraft can be significant, especially in a steep and tight coordinated
turn with an extreme angle of attack.

The second factor seems to be a result of an imprecise definition of the
term "normal load factor." Neglecting the above two factors can therefore
introduce substantial errors in the kinematic relationships among the variables
of motion in coordinated turns, especially in those turns involving extreme
flight conditions. Therefore, there is a need to clearly spell out a set of
exact equations governing steady, coordinated turns in order to provide an
accurate calculation of trim conditions, such as aircraft pitch and roll atti-
tudes and angular rates.

Accurate knowledge of aircraft attitudes is necessary in planning, con-
ducting, and interpreting the flight experiment. A more important requirement
(but less emphasized) is the knowledge of the angular rates of the helicopter
in a coordinated turn. The angular rates about the body axes can exert a sig-
nificant impact on the performance and handling characteristics of the air-
craft. The effect of pitch rate on alleviation of stall of the main rotor is
well known (ref. 7). As a corollary, the yaw rate can either alleviate or
aggravate stall on the tail rotor, depending on the sense of the yaw rate.
Roll rate has a direct coupling to the thrust of rotor systems in forward
flight because of the asymmetry in dynamic pressure on the advancing and the
retreating sides of the rotors. Further, pitch and roll rates significantly
influence the control stick trim position in a coordinated turn because of
aerodynamic and inertial (gyroscopic) coupling (e.g., refs. 8, 9, and 10).

The objectives of this research are therefore: (1) to develop exact
equations governing a general steady, coordinated helical turn, (2) to examine
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the various definitions/interpretations of load factor for helicopters in
maneuvering flight and establish their relationships to steady, coordinated
turns, and (3) to evaluate the effect of inherent sideslip and other key flight
parameters on the helicopter attitudes and angular rates in coordinated turns.
The development that achieves these objectives is discussed in the following
sections, followed by a summary of the results.

KINEMATICS OF THE HELICOPTER IN STEADY, COORDINATED TURNING FLIGHT

In this section a set of kinematic equations governing the helicopter in
a steady, coordinated turn about a vertical axis is developed. Throughout the
derivation we shall retain the generality of the equations consistent with the
flat-earth approximation (ref. 11); no small-angle assumptions will be used.

In steady, turning flight (i.e., ﬁI = QI = ﬁI =0; p=g=1%t =0) the
Fuler equations (ref. 11) reduce to

X

mg sin 6 + m(qwI - rvI)

Y = -mg cos 8 sin ¢ + m(ru. - pr) (1a)

I
Z = -mg cos 6 cos O + m(va - quI)
- 2 _ 2y _ _ _
L I Z(q re) Ixzpq + Ixyrp (Iy Iz)qr
M I (r P°) Ixyqr + Iyzpq (Iz Ix)rp (1b)

= - — 2 — — —
N Ixy<p q) Iyzrp + Ixzqr (IX Iy)pq

When the aircraft is making a steady turn about an earth-referenced vertical
axis with a steady turning rate of V¥, the three components of angular velocity
about the body axes of the aircraft become

p = -¥ sin @
q =V cos 6 sin © (2)
r=1Y% cos 6 cos ¢

Now replacing the three force components X, Y, and Z along the body axes in
equation (la) by the accelerometer readings at the center of gravity of the
aircraft, i.e., ngy = X/mg, ny = Y/mg, and n, = Z/mg, and expressing the three
components of the flight velocity Vi by

u; = VI cos o, cos BI
v, = VI sin BI 3)
wp = VI sin ap cos BI



Equation (la), by virtue of (2) and the substitution above, becomes

n_ = sin 0 + tan ¢1(51n aI cos BI cos O sin & - sin BI cos @ cos 9)
ny = -cos O sin ¢ + tan ¢, cos BI(cos ay cos © cos ¢ + sin oy sin ©) 4)
n, = -cos ® cos & ~ tan ¢l(sinBI sin © 4+ cos a, cos BI cos O sin @)
where
@VI
tan ¢, = —g— (5)

For a coordinated turn, ny = 0, and the second equation in equations (4)
yields the following constraint equation

sin ¢ = tan ¢, (cos ap cos ® + sin o tan O)cos BI (6)

Further, the aircraft pitch and roll attitudes O, &, and the angle of attack
and sideslip are related to a given flightpath angle vy by the kinematic
relationship:

cos a cos BI sin © - (sin BI sin ¢ + sin o_ cos BI cos ®)cos O = gin vy

(7

I

Note that in steady flight, the force components X, Y, Z (or nyx, Ny, n,) and
the three moment components, L, M, and N are functions of the aerodynami.c
flight parameters, V, a, B; p, q, r, and control positions (e.g., 8g, Sac, G5,
6p). Symbolically,’

nX = £(V, o, B; P, 4, ¥ aes GC’ 63’ SP)

with similar functional relationships for n,, n,, L, M, and N. It should be
emphasized here that V, a, and B are related to air mass; Vy, oy, By and vy
are related to earth. Figure 2 shows the relationship of the two sets of
parameters for the case when B = By = 0. Let (uW,VW,WW)T be the steady wind
velocity Vi (relative to earth) as expressed in the earth referenced axes

XTs Y1» 27 Then the three components of the flight velocity (relative to
earth) as expressed in the body axes are given by

1For the steady flight considered here, the dependency on V, &, B has

been dropped.

’The definition for the angle of attack and angle of sideslip is a stan-
dard one (ref. 11). An alternate definition for the angle of sideslip, which
is sometimes used in the helicopter technical community, is

B* = tan-l(z)
u

We recommend that an asterisk superscript be assigned for this particular
definition to avoid unnecessary confusion with 8.
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up = V cos o cos B + Au
v = V sin B8 + Av
v = V sin a cos B + Aw
where
ﬁuj [ cos 0 cos ¥ cos O sin ¥ -sin © 7 ﬂ%;
Av] = Jsin © sin & cos V¥ sin © sin ¢ sin ¥ sin ¢ cos O]} vy,
- cos ¢ sin V¥ + cos & cos V¥
Aw sin O cos 9 cos Y sin O cos ¢ sin ¥ cos $ cos © Wy,
[ |+ sin & sin ¥ - sin ¢ cos V¥ JL J
and
v, o= (uI2 + VI2 + w]:z)l/2
ap = tan_l-g£
I
R
BI sin VI

Clearly, in the calm air situation, Vy =V, a7 = a, and Bt = B. Thus for a
given set of V¥, Vy, and vy, the eleven algebraic equations (1b), (2), (4), (6),
and (7) completely determine the eleven unknown trim values in a steady
coordinated turn, i.e., Euler attitudes ©, ®; angular rates p, q, r; the
angle of attack o, angle of sideslip g, and the four control variables of

the aircraft. For convenience, this set of equations is summarized in table 1.

It should be noted that equations (6) and (7) are the two important kine-
matic equations that relate the body axis Euler angles © and & to the flight
parameters Y, oy, By, and ¢,. As discussed earlier in the introduction, a
single main rotor helicopter normally exhibits some sideslip in a coordinated
turn, the amount of which depends on the aircraft configuration as well as the
side~-force characteristics.

The turn parameter ¢, that relates the turn rate and the speed of flight
as given by equation (5) is kinematically related to the load factor which is
discussed next.



LOAD FACTOR AND TURNING PERFORMANCE

The lack of a precise and rational definition of the term "load factor"
and the fact that the roll attitude and the thrust vector tilt are generally
different may well be the two major sources that contribute to the discrep-
ancies between theory and flight test results relating aircraft bank angle to
load factor. In this section we shall first describe analytically the various
uses of the term "load factor" for a helicopter in maneuvering flight. The
differences between these definitions are then examined in both steady straight
flight and coordinated turns. Finally, a definition of load factor with its
rationale is then proposed for universal use for the helicopter in maneuvering

flight.

A review of the helicopter literature related to maneuvering flight
reveals that there are at least three definitions (or interpretations) for the
term "load factor." They are: (1) the normal acceleration in units of g,
ny (refs. 2, 5, 6, and 12), (2) the accelerometer reading at the c.g. of the
aircraft along the vertical body axis, -n, (refs. 2, 5, and 6), and (3) the
thrust to weight ratio n' = T/W (refs. 4, 10, 12).

The lack of a unified definition or interpretation of load factor for a
pure helicopter in maneuvering flight may stem from the fact that the thrust
of the main rotor is used for lifting the aircraft as well as for providing
the propulsive force. In the case of a conventional fixed-wing aircraft
(CTOL), the propulsive force is not obtained from the main lifting device, but
rather from a jet or an air screw. The definition of load factor for a CTOL
aircraft has been uniquely based on the lift of the aircraft.

For the sake of comparison, we will add to the above three definitions, a
fourth one derived from the fixed-wing practice, i.e., (4) the 1lift to weight
ratio of the aircraft, ng . = L/W (refs. 11, 12).

Note that the thrust to weight ratio, n', generally differs from the
ratio of the total aerodynamic and propulsive force to weight of the aircraft,
n, which is the vector sum of the signals of the three orthogonal accelerom-
eters at the center of gravity of the aircraft and they are normally available
in the standard test instrumentation complement. For preciseness, n instead
of n' will be used in the subsequent discussions. For a pure helicopter
(i.e., conventional rather than compound helicopter) the two quantities,
namely, n and n', are approximately equal.

The four definitions of load factor in a steady coordinated turn are
interrelated by

. aal/2
cos lWI
nT=ETY1= 1 + ? cos Y (8a)
= (n%W + tan? BI sin? Y)1/2 (in calm air) (8b)



(nT2 - cos? Y)1/2
- = + i i i
n, cos O cos ¢ % cos v (sin BI sin O+ cos aI cos BI cos O sin )
(9
. . _ . 2 _ 2 2
To obtain (8b), one first notes that ng, = ~sin Yy and that np° = nyw + nz
It can be shown then that ny = -tan 87 sin v. In equation (9) it should be
noted that + 1is for right turns and -~ 1is for left turns. Further, © and ¢
satisfy (6) and (7). Also,
n = (nT2 + sin? Y)1/2 (10a)
- 2 2y1/2
(nX + n, ) (10b)
and
Ny, =0 sin a - n_cos a (11a)
tan aI sin ¥y n,
= - (in calm air) (11b)
cos BI cos aI

From the above relationships, we observe that n 1is always greater than or
equal to either ny or -n,. In calm air, at 2 Nz, always, and Ny, 2 Ny
whenever oy and y have the same sign. 1In a steady coordinated level turn,
in particular, it is seen that n 1is always equal to ng, and that in calm
air,

indicating that the first, third, and fourth definitions coincide.

The effects of o and B on the four definitions of load factor in steady
coordinated 2g (np) right turns in calm air are illustrated in figure 3. For

level turns note that n = ng, = By = 2 throughout and that -n, is indepen-

dent of B as confirmed by the above equation. For climbing and descending
turns, n is independent of o and B (by the same token ng; 1is also); Nz, is

independent of o, and is symmetrical with respect to ¥ and B as confirmed
by equation (8b); -n, is symmetrical with respect to B8 and is also sym-
metrical with respect to the pair (o,y) as evident from equations (8b)

and (11b). These effects are independent of the direction of the turn.

Figures 4 and 5 show, respectively, the relationships between -n, and np,
and Nz, and ny for a range of np from 1 to 3g. The aircraft is flown in

calm air and the coordinated turns are right descending with vy = -20°. Note



that -n, 1is strongly influenced by a, but Nz, is independent of a. Both

-n, and n, are only weakly affected by the inherent sideslip.

0f fundamental importance is the fact that =n and ny depend upon flight-
path and therefore are independent of o and 8. On the other hand, both -n,
and ng  are functions of the inherent sideslip and n, is also dependent

upon angle of attack in a given coordinated turn. They are therefore dependent
on the specific aerodynamic characteristics of the helicopter. It is only
logical, therefore, to adopt n as the definition of load factor for the
helicopter in maneuvering flight. As a corollary the term normal load factor
should be given to np, 0ot -ng,. The value of np  can be calculated from n
using equation (10a) or from VY wusing (8a).

To further strengthen the above statement, we shall now consider a specigl
case of coordinated turn, namely, a coordinated turn where the rate of turn V¥

approaches zero. This is steady "coordinated" straight flight, which can
readily be shown to be identical to steady straight wing-level flight.

Coordinated Steady Straight Flight

With ¥ =0 equations (8a), (9), (10a), and (lla) reduce to

n, = cos y )
-n, = cos ¢]
\ (12)
n=1
ng, = cos (0 - a)J

The aircraft pitch attitude © 1is strongly influenced by the inherent sideslip
in this flight condition. In fact,

sin(® - a.) = Sin v (13)

Thus, while ny and n are independent of the aerodynamic characteristics of
the helicopter, -n; and Ny, depend on the aerodynamic characteristics as well

as wind conditions. In the calm air situation, o = o s and nzW becomes
.2 1/2
= . sin- v
ng. (1 cos? BI> (14)

When sideslip is absent in coordinated straight flight (generally in the case
of fixed-wing aircraft) equation (1l4) yields Ny, = COS Y, which is seen to be
identical to ng.



The amount of inherent sideslip depends on the lateral-directional aero-
dynamic characteristics of the helicopter. TFigure 6 shows an example of the
flight test results of three helicopters (from ref. 13) in straight wing-level
flight. As indicated in this figure, substantial inherent sideslip can be
present in low speeds.

Now we return to equation (12). If we use n as the definition of load
factor as proposed earlier in the report, them n =1 1in a steady straight
flight (level or not, and, in fact, coordinated or mnot). Since steady straight
flight 1s unaccelerated f£light, the choice of n as load factor is indeed
appropriate.

Having determined a rational definition of load factor we now proceed to
examine the rate and radius of turn in a steady helical turn.

Rate and Radius of Turns

In a steady turn at a given speed, an increase in load factor increases
turn rate and reduces turn radius. At a given load factor, an increase in
speed decreases turn rate and increases turn radius. TFurthermore, for a given
load factor, the helicopter turns at a faster turn rate and on a smaller
radius in a helical turn than in a level turn.

In a steady helical turn, the turn rate can be derived from equations (8a)
and (10a)

Y o= g 2 _ 2 1/2
Y * VI cos ¥ (nT cos® ) (15a)
=t V. cos ¥y (n2 - 1)1/2 (15
I

where the positive sign is for a right turn and the negative sign is for a
left turn. It follows that the turn radius is

T g(n. % - cos? Y)l/2 (162)

(16b)

gn? - 1)*/?

Figure 7 shows the radius and the rate of turns for several values of the

flightpath angle over a range of flight speeds. The time to complete a 180°
turn for a range of VI and vy 41is shown in figure 8.



HELICOPTER ANGULAR RATES AND ATTITUDES IN STEADY COORDINATED TURNS

The aircraft angular velocities about the body axes have significant
influence on the thrust capability and stall characteristics of both the main
rotor and the tail rotor. Therefore, it is important to examine the effects
of the flight parameters such as vy, o, B, and V, as well as load factor on
angular velocities of the helicopter in a coordinated turn.

The helicopter pitching velocity, for example, has a well-known effect on
the thrust capability of the rotor. A positive-pitching velocity, such as
that which exists during a coordinated turn, has been shown to provide an
increased thrust or g-capability due to loading of the advancing blade and
unloading of the retreating blade, thereby providing a stall-alleviating effect
for a 1lifting rotor. The principal mechanism causing this effect is due to a
gyroscopic moment acting on the rotor system (ref. 7). Conversely, a negative
pitching velocity will aggravate stall of the rotor system. As a corollary,
yaw rate has a significant effect on the stall characteristics of the tail
rotor. In fact, it is an important factor to be considered in the design of
the tail rotor system (ref. 14). The helicopter roll rate couples directly to
the thrust of the main rotor system (ref. 8). The effect is due primarily to
the change in the rotor inflow distribution. As such, it is primarily an
aerodynamic rather than an inertia effects, as is the case for the pitching
velocity discussed previously.

Helicopter Angular Rates in Steady Coordinated Turns

The aircraft angular velocities in the body-axes system in a coordinated
helical turn can be developed using equations (2), (6), and (7). From equa-
tions (2), it is clear that p, q, and r are functions of aircraft turn rate
and the body-axes Euler angles © and . Since in a coordinated turn, © and ¢
are functions of Yy, ay, and By as indicated in equations (6) and (7), and
the rate of turn is a function of np, Vi, and vy, it would seem then that p,
g, r would also be functions of np, v, Vi, ap, and By. However, it will be
shown in the following that although such is the case for p and r, the pitch
rate q 1is independent of the angle of attack in a coordinated turn.

Equations (6) and (7), respectively, become

q = tan ¢, cos BI(r cos ap = p sin aI) (16)
- ¥ sin Y _ p
q tan BI = ESE_?E_ (r sin o + p cos aI) (17)

by virtue of equations (2).
Denoting the two terms in the parenthesés in the above euqations by r

and p' respectively, namely, r' = r cos o — p sin ay, and
p' = r sin ay + p cos oy, equations (16) and (17) become

10



r' = 1 (18)
tan ¢1 cos BI
p' = - 18I Y _ o pan By (19)

cos BI

where p' and r' are related to p and r by a rotation in a; (i.e., loosely,
p' and r' are the roll and yaw rates about the stability axes§,

P cos o -sin o p' :
. 1
r sin o, cos op r
Note from equation (20) that p'2 +r'? = p2 + r?, Therefore, from (2),
p'2 +r'? = y2 - q2. When this identity is utilized, equations (18) and (19)
will yield the following quadratic equation for the pitch rate:
2

v -~ cos?2 B.) =0 (21)

(cosec® ¢,)q? + (2% sin vy sin B.)q + ¥?(sin
1 I I

The solution for q is therefore given by

1
. ) ) ) sin“® vy - cos? BI /2
q =Y sin ¢1 -sin vy sin BI * {sin® vy sin BI - sinZ 3 (22)

Since q 1is always positive in a steady turn, regardless of the turn diree-
tion, there is no ambiguity in selecting the proper sign in equation (22).

From equation (22), it is clear that in a coordinated turn, pitch rate is inde-
pendent of angle of attack. However, roll and yaw rates are affected by oy,
which is evident from equations (18), (19), and (20).

In equation (22), the rate of turn is related to Vi, ¥, and nT by
equation (15). The two terms tan ¢, and sin ¢, that are required in equa-
tions (18) and (22) can be expressed in terms of the load factor, n, and the
flightpath angle, vy, as follows:

1

\ tan ¢, = * cos v (nT2 - cos? y)l/z (23a)

- 2 _ 1/2
t cos Y (n 1) (23b)

and
sin ¢; = * QL—(n 2 - cos? Y)l/z (24a)
nT T

2 _ 1/2

= + _n -1 (24b)
n? - sin? y

11



In equations (23a) through (24b), the positive sign is for a right turn and
the negative sign is for a left turn,

Figures 9 and 10 show angular velocities and pitch and roll attitudes in
steady, coordinated right turns® at np=2g and flight speed of 60 knots with
various combinations of o, B, and y. Note that the aircraft pitch rate is
not dependent on o, but the roll and yaw rates are. Note also that roll rate
changes sign from positive to negative when the aircraft pitch attitude changes
from positive to negative. The effect of the inherent sideslip on the aircraft
roll rate is much more pronounced than are either the pitch or the yaw rates,
over the range of vy and o considered.

Some symmetrical properties are noteworthy: a simultaneous change in the
sign of vy, a, and B results in only a sign change for the roll rate; the
signs and the magnitudes of the pitch and yaw rates remain unchanged. When
the direction of the turn changes, say from right to left, the magnitudes of
the angular rates are symmetrical with respect to the sideslip and the signs
of the roll and the yaw rates are changed. Thus, all left turn parameters may
be derived from the right turn computations by making the proper sign changes.
Symbollically:

Right turn Left turn
@ ng, Vo) (@ ngs Vo)
Y P Y -P
al =+ ¢ oy > ¢
B r -B -Tr
=Y -p =Y P
—aY + g —or > q
-B r B -r

It is of additional interest to examine the behavior of pitch rate for
two specific flight conditions, namely (a) coordinated level turns and
(b) coordinated turns that have no inherent sideslip (as normally the case for
fixed-wing aircraft), and further to observe the influence on roll and yaw
rates that follow based on equations (18), (19), and (20).

Coordinated level turn- With vy = 0, equation (22) becomes

q = & sin ¢, cos BI (25)

The corresponding formulas for p and r are given in the appendix. Using
equations (15) and (24a) and noting that for vy =0 and nt = n, equation (25)
becomes

q = E%; (n® - 1)cos BI (26)

3Unless noted otherwise, all the turns are flown in calm air.
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Thus, for a coordinated, level turn at a given g-level and speed Vy, the
presence of sideslip decreases the aircraft pitch rate, thereby reducing the
stall 4lleviation effect discussed earlier.

More symmetrical properties relevant to the coordinated level turn may be
of interest to note. It is evident from equations (25) and (26) that q is
independent of o7 and is an even function of §7, i.e., symmetrical with
respect to By; that r is symmetrical with respect to the pair (aI, BI); and
that the roll rate is skew-symmetrical with respect to the pair (aI, BI) (i.e.,
p 1is an odd function). The last two properties can be seen from equa-
tions (18), (19), and (20), and all of the above symmetrical properties are
shown in figure 9.

Figure 11 shows the effect of the inherent sideslip on the aircraft angu-
lar rates in coordinated, level right turns over a range of normal load factor
from 1 g to 3 g. Again, the flight speed is 60 knots, and several values of
angle of attack are shown.

Coordinated turn without sideslip- If sideslip is not present in a coor-
dinated turmn, then the pitch rate becomes

q =Y sin ¢, cos ¥y 27)

Formulas for p and r are given in the appendix. Expressed in terms of the
load factor, the above equation can also be written as:

q = /2

1
VI(n2 - sin? v)

It is readily seen from equations (26) and (28) that for the same load
factor and speed of flight, a coordinated helical turn (either climbing or
descending) increases the aircraft pitch rate over its counterpart in a coor-
dinated level turn. Thus by taking advantage of the rate of change of poten-
tial energy of the aircraft, a helicopter at a given airspeed can generate more

"g" in a helical turn than in a level turn before encountering stall.

It is of fundamental importance that the pitch rate g is independent of
the aerodynamic characteristics of the helicopter. It depends only on the
turning parameters, i.e., Vi, np, Y, and the direction of the turn. By the
same token, the roll and yaw rates about the stability axes, i.e., p' and r',
are also independent of the aerodynamic characteristics of the aircraft. 1In
fact, for a coordinated turn, all aircraft have identical angular rates about
their stability axes, which are characterized by the same set of four turn
parameters if no sideslip is present.

This important kinematic property has far reaching ramifications. Since
fixed-wing aircraft normally exhibit no inherent sideslip in a coordinated

*The turn of interest here is characterized by a set of four turn param-
eters or their equivalence such as np, v, ¥, counting the magnitude and the
direction of V¥ as two parameters.
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turn, the angular rates about the stability axes will be identical for all
these aircraft, i.e.,

p' = -¥ sin Y
q' = ¥ sin $, cos v (29)
r' = ¥ cos ¢, cos ¥y

Note that (29) can also be derived directly by transforming / through vy

and ¢,. It follows that all the kinematic terms in the Euler equatiomns (la)
and (1b) will also be identical if these aircraft have the same weight and
inertia characteristics referenced to their stability axes. It is only logi-
cal, then, to use the stability axes to isolate the influence of inertia effect
and to study the influence of aerodynamic characteristics on dynamic behavior
during steep, turning flight.

Helicopter Pitch and Roll Attitudes in Coordinated Turns

With the angular rates calculated as shown in the preceding subsection,
the aircraft pitch and roll attitudes can be obtained as follows:

0 = sin_l(%?) (30a)
o = tan_l(%) (30b)

If we substitute the roll and yaw rates into the above equations, the results
become

sin vy cos ar

sin @ = +
cos BI

=N}

sin aI
(cos o tan BI + tan ¢, cos BI) (31a)

tan ¢1 cos BI

tan @ (31b)

cos ar - tan ¢, sin a . sin BI - (¥/q)tan ¢, sin y sin «

I L
where q 1is given by equation (22). For convenience, these equations along
with the formulas for the angular rates are summarized in table 2.

Unlike the angular rates, which are functions of ag, By, and the com-
plete set of four turn parameters, the pitch and roll attitudes depend on o s
Brs and only the three turn parameters, namely v, np (or ¢1), and the direc~
tion of the turn. The pitch and roll attitudes in a coordinated turn are
independent of the flight speed or the rate of turn. As in the case of the
angular rates, there are also interesting symmetrical properties for the pitch
and roll attitudes with respect to the direction of the turn, v, o7 and Bt
as summarized in table 3. Also, it is important to note that ¢ # by unless

ap = B = 0.
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Figure 10 shows the influence of sideslip on the aircraft attitudes in
steep helical turns at np = 2g. Figure 12 shows its effect over a range of
the normal load factor from lg to 3g. In addition one can see from these
illustrations that ¢, and ¢ can differ markedly in a coordinated turn at a
higher value of np, especially at extreme values of Yy, ap, and Bys and that
sideslip has a strong influence on the pitch attitude of the aircraft. The
symmetrical properties from these figures indicate that if the pitch and roll
attitudes © and ¢ have been calculated for a right turn at ngp, Yy, ap, and
f1, then their values for a left turn at nr, v, 07, and -f7 will be © and
-¢%. This and other symmetrical properties are shown in table 3.

For a coordinated level turn, equations (30a) and (30b) may be reduced to

sin © = sin ¢, cos o sin BI + cos ¢, sin oy (32a)
tan ¢, cos B
I
tan ¢ = cos o_ — tan ¢, sin o, sin B (32b)
I 1 I 1

by virtue of equation (25). Figures 10 and 12 show the influence of sideslip
on the aircraft attitudes in coordinated level right turns at np = 2g and
over a range of the normal load factor from lg to 3g, respectively. Note that
the effect of sideslip in a level turn is somewhat weaker as compared to the
steeper turn case.

Additional symmetrical properties for a coordinated level turn are (1) the
roll attitude is symmetric with respect to the pair (aI, BI) and (2) the pitch
rate is skew-symmetric with respect to this pair. This can be seen from
equations (32a) and (32b).

Further Discussions of the Results

The new formulas developed in the two preceding subsections, which
directly connect the aircraft angular rates and pitch and roll attitudes to
the turn parameters, angle of attack, and sideslip can be used to drastically
simplify the trim computation for the helicopter in a steady coordinated
helical turn. This simplification is due to equations (20), (22), (3la),
and (31b) essentially decoupling the 11 governing equations shown in table 1.

For a steady coordinated helical turn,s the 11 governing equations
uniquely determine the trim values of the following 11 flight parameters:

Angle of attack and sideslip as B (or Crs BI)
Aircraft angular rates P> 49> T
Aircraft pitch and roll attitudes 6, ¢

Control positions, e.g., 8as 8cs 855 Gp

*Recall that the turn in question is characterized by a set of four turn
parameters as discussed earlier.
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It would be necessary, without those five new formulas for aircraft angular
rates and pitch and role attitudes, to invert an associated 11x11 Jacobian
matrix in each iterative cycle in the numerical solution of the eleven (non-
linear algebraic) governing equations. With the aircraft angular rates and

© and ¢ expressed explicitly in terms of aj and By (see equations (3la)

and (31b), the associated Jacobian matrix can be compressed into a simpler 6x6
as normally is the case for a steady straight-flight condition.

let ¢, f, and g be denoted by

T
_(_:_ = (OLI’ 619 (Se: 6C, 63’ SP)
T
f = (f1, £2, f3, fy, £5, f¢) (33)
T
&= (ps 9, T3 ©, 0)
where f1, f2, . . ., fs are the first six steady state Euler equations in

table 1. Note that g = g(c). Then f takes the following form
f =F[c, g(c)] =0 (34)

The associated six by six Jacobian matrix 23f/3c becomes
og
= _ JF QF =
e tg e (35)

The Jacobian matrix 9£/0c 1is a necessary ingredient in the iterative methods
for numerical solution of the trim equations. If, for example, a Newton-type
procedure is used, then an algorithm for determining the trim values for the
vector c¢ beginning with an initial guess ¢, 1is of the following sort

Sy T8y O
8 (LY
%17 Tli\se, fley)

where A; £ 1 is a damping parameter for a stable iteration. With the trim
value for ¢ determined, say c;, the desired trim values for the angular
rates and © and ¢ follow immediately, which are

8 = 8. ()

In the absence of an inherent sideslip in a steady coordinated turn, as
is normally the case for fixed-wing aircraft, the trim computation can be made
even simpler. As discussed earlier, the pitch rate, under this condition, is
now only a function of the turn parameters; p, r, 0, and & are functions of
turn parameters and oj only. These fortuitous properties should be benefi-
cial in applications for fixed-wing aircraft.
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In the preceding paragraphs, we have dwelled on the calm air situation.
In the presence of a steady wind, the flight parameters at trim ¢, and g,
will no longer be constant. In fact they will depend on the heading of the
aircraft except when the wind is purely vertical in the earth-referenced axes
system. As such they will become periodic time-varying functions.

In the presence of a horizontal wind, for example, the body axes compo-
nents of the wind, Au, Av, Aw will be fgnctions of the aircraft heading,
which is constantly changing with time (¥ = constant). For given wind condi-
tions (direction and magnitudes), the trim computation procedure described
above applied at a specific heading of the aircraft, say ¥ = ¥;, will result

in a quasi-steady trim value Qit’-ﬁt)w—w . When the aircraft heading changes
=1

from V¥; to ¥, the corresponding quasi-steady trim values (Ettﬁt)w—w will
=ty

differ from those for the heading at V¥,. Thus, a steady flight with constant
flight parameters will no longer exist in a coordinated turn in the presence
of a steady horizontal wind.

CONCLUDING REMARKS

A set of eleven exact kinematic equations which govern a steady, coor-
dinated, helical turn involving inherent sideslip has been developed in this
analytical study. A variety of definitions and interpretations of load factor
for the helicopter in maneuvering flight has been examined and interrelation-
ships established for steady coordinated turns. It is concluded that the most
logical definition of load factor to be used for the helicopter is the ratio
of the total aerodynamic and propulsive force to the weight of the aircraft.
This ratio is also the vector sum of the signals of the three orthogonal
accelerometers at the c.g. of the aircraft. In a steady coordinated turn, load
factor is independent of angle of attack and sideslip; it depends only on the
turn parameters. Likewise the load factor normal to the flightpath exhibits
properties similar to those of the total load factor. Furthermore, normal
load factor, instead of the accelerometer signal along the vertical body axis
is more appropriate to associate with turn performance in the presence of
sideslip.

New formulas that explicitly relate aircraft angular rates and pitch and
roll attitudes to the turn parameters, angle of attack, and sideslip have been
obtained. These formulas decouple the eleven governing equations, thus dras-
tically simplifying the computation of the kinematics for the helicopter in
steady coordinated turns. Incorporation of these equations into the standard
helicopter simulation computer code may improve the accuracy of the trim com-
putation for coordinated turns. A detailed evaluation of the effects of side-
slip on the kinematic relationships in calm air indicates the following:

1. In a steep, helical, coordinated turn at high normal load factor and
large angles of attack and sideslip, the bank angle of the aircraft can differ
markedly from the tilt of the normal load factor. Likewise, the normal load
factor can differ substantially from the accelerometer signal along the verti-
cal body axis with the origin at the center of gravity of the aircraft.
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2. Sideslip has a strong influence on the roll rate and the pitch atti-
tude of the helicopter. It therefore exerts influence on the performance as
well as the handling qualities of the helicopter.

3. The pitch rate of the helicopter is dependent on the turn parameters
and sideslip; it is independent of angle of attack. The presence of sideslip
reduces the pitch rate, thereby reducing the stall alleviation effect on the
main rotor system. Also, for the same load factor and speed of flight, an
increase in flightpath angle results in an increased pitch rate and augments

the stall alleviation.

4. TImportant symmetrical properties exist for the angular rates and the
pitch and roll attitudes with respect to the direction of turm, v, o, and B7.
These properties further simplify analysis and computation. They are summar-
ized in table 3.

In the presence of a steady, horizontal wind there no longer exists a
coordinated turn with steady (constant) flight parameters. All of the perti-
nent variables of the motion, i.e., ©, ®; p, q, r; o, B (or ay and By) and
the control variables &85, 8., 6,5 6P (e.g.) will change with the heading of
the aircraft for a specific turn, characterized by the four turn parameters
described earlier in the report.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, January 1981
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APPENDIX

ATRCRAFT ANGULAR RATES IN COORDINATED LEVEL TURNS AND
COORDINATED TURNS WITHOUT SIDESLIP

In this appendix formulas for aircraft angular rates for the two special
flight conditions that were examined at some length in the text, namely,
(a) coordinated level turns and (b) coordinated turns that have no sideslip,
will be derived. It will also be shown here that, under these special condi-
tions, the formulas can be obtained in a more direct manner.

Coordinated Level Turns

The angular rates can readily be obtained by substituting equation (25)
into equations (18), (19), and (20), as follows:

P -¥(sin ¢, cos a. sin BI + cos ¢, sin aI)

I

0
Il

¥ sin ¢, cos BI (Al)

at
]

~¥(sin ¢, sin o, sin BI - cos ¢, cos aI)

I

Equation (Al) can also be obtained in a different, but more direct way.
From equation (8b) we observe that whem vy =0 or gf =0, or ¥y =+BI = 0,+

then Ny, = 0o which indicates that nYw = 0 and that therefore np and Nz

coincide. Thus, it follows that the directions of VI, Ar, and ¥, (which is
perpendicular to both Vg and KT) form the stability axes system (—xw, Yws
-zy). This property for these special cases can now be used to obtain (Al)
directly from (29) through rotations in 81 and ay. For vy = 0, we have

P cos a, cos BI -cos o, sin BI -sin a; 0]
q = sin BI cos BI 0 ¥ sin ¢, (A2)
r sin a; cos BI -sin a; sin BI cos ap ¥ cos ¢,

which is indeed identical to (Al).
Coordinated Turns Without Sideslip

Under this condition, pitch rate is given by equation (27). By virtue
of equations (18), (19), and (20), the angular rates can be shown to be

19



P = —@(cos oy sin v + cos ¢, sin o, cos Y)
q = ¥ sin ¢, cos vy (A3)
r = —@(sin aI sin y - cos ¢1 cos aI cos v)

As in the case of coordinated, level turns, equation (A3) can also be obtained
directly from (29) as follows:

P cos oy 0 -sin o, -¥ sin ¥
q ]= 0 1 0 ¥ sin ¢, cos vy (A4)
r sin aI 0 cos aI Y cos ¢, cos v

It should be emphasized that except for these two special cases the angu-
lar rates in the body axes system cannot be obtained directly from (29).
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TABLE 1.- EQUATIONS GOVERNING A COORDINATED HELICAL TURN

Steady-state Euler equations:

nx - sin 6 - tan ¢1(sin aI cos BI cos 6 sin ¢ - sin BI cos 0 cos ¢) =0
ny =0 : (1la)
nz + cos O cos ¢ + tan ¢1(sin BI sin 6 + cos ap cos BI cos 8 sin ¢) =0
L + Iyq(q2 -r?) + Ixzpq - Ixyrp + (Iy - Iz)qr -0
M+ IXz(r2 - p2) + Ixyqr - Iyzpq + (Iz - Ix)rp =0 (1b)
N + Iyx(p2 - q%) + Iyzrp - Ixzqr + (IX - Iy)pq =0

Kinematic relationship:
sin ¢ = tan ¢l(cos o, cos ¢ + sin oy tan 6)cos BI (6)
sin v = cos o cos BI sin 8 - (sin BI sin ¢ + sin o, cos BI cos ¢)cos 6 (7)
p = —@ sin 6
q =1V cos 6 sin ¢ (2)

r = @ cos 0 cos ¢

where

tan ¢, = =+ (n? - 1)1/2 » + right turn; - left turn.




TABLE 2.- ALGORITHMS FOR A/C. ANGULAR RATES AND EULER ANGLES IN A
COORDINATED HELICAIL TURN

Given: n, (or @), Ys VI’ ers BI
Then:
A
T+ g 2 _ 2 1/2
v VI cos Y (nT cos” )
1 , ) 1)z @VI + right turn
= =+ - = e—
tan ¢, * s ¥ (nT cos‘ v) 2 >
. - left turn
Yv
= -1, 2 _ 2 1/2] - —1( I)
¢, tan [} cos (nT cos® v) tan 2 ‘
n =S98 Y

T cos ¢,

1/2
. sin? Y - cos? BT /
q=y sin? ¢1 —sin v sin B_ % sin? Y sin? g - 2
1 I sin® ¢,
q
' q N @ sin y _
r tan ¢, cos BI 3 P cos BI q tan BI
= ! —_ 1 T
P p' cos aI r' sin aI

r = p' sin o + r' cos o

6 = sin—l(§>
b = tan—l(%)

v
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TABLE 3.- SUMMARY OF SYMMETRICAL PROPERTIES
OF AIRCRAFT ANGULAR RATES, ATTITUDES AND
n-PARAMETERS (AT n_, VI)

o _ T
Right turn Left turn
Y ) v )
ap ¢ $,85 p.q,r ar ¢ —-¢,0; -p,q,-r
nz’nz Fyel nz,nz sTL
BI) w "BI) w
-y W -y 3\
—oap p $,-0; -pPsq,r | —a + -¢,~6; p,q,-T
nz,nz ] nz,nz ,n
_BI‘ W BI‘ w
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